NOAA Satellite Information System


Home

Argos Applications

System Use Policy

User Area

System Use Agreement
of the Month

 2017:
 Jan  |  Feb  |  Mar  |  Apr  |  May

 Past By Year:
 2012  |  2013  |  2014  |  2015  |  2016
 2017

Other Links

 

 

ARGOS Image
Argos DCS System Use Agreement of the Month
– May 2014

Prince William Sound Science Center
Prince William Sound Oceanography

Description:

Alaska's Prince William Sound (PWS) includes over 6,000 km of shoreline and contains an extensive system of tidewater glaciers descending from the highest coastal mountain range in North America. The Trans-Alaska Pipeline carries oil to the Port of Valdez in northern PWS. The oil is then shipped to southern refineries on large tankers, making the environment of PWS highly vulnerable to oil spills, as evidenced by the 1989 Exxon Valdez spill. The Oil Spill Recovery Institute (OSRI) and its partner organizations conduct research in PWS to enable detection and prediction of oil-spill related impacts and subsequent recovery. This mission led to the development of a PWS ocean circulation model coupled to a regional atmospheric circulation model. These early efforts resulted in a much better understanding of PWS but more information was needed to resolve smaller scales of time and space. The modeling program has now been integrated with the Alaska Ocean Observing System (AOOS) to take better advantage of real-time data streams from satellites, weather stations, and an enhanced observational oceanography program consisting of moored buoys and seasonal hydrographic surveys.

The observing system in PWS observing has two primary goals. The first goal is to provide physical and biological information to the major user groups in PWS including the coastal communities, oil and gas transportation industry (tanker traffic and oil spill response), air taxis, commercial fishermen, recreational and commercial boaters, and Coast Guard search and rescue operations. For example, the high-resolution wind, wave and ocean current forecast products will provide improved weather forecasts to commercial and recreational vessel and aircraft operators, as well as enhance the safety of oil tanker traffic in PWS. The improved physical and ecological forecasting products will enable resource programs and managers to make better management decisions on food supply, predation, and human activities such as commercial, recreational and subsistence fishing.

The second goal is to combine long-term monitoring with short-term hypothesis-driven process studies to understand mechanisms underlying the dynamics of the interactions between the major coastal currents and the production of flora and fauna of the Pacific Ocean, the Gulf of Alaska, and PWS. Of particular interest is the understanding of predominant mechanisms of ecological variability. Understanding the circulation patterns and dynamics of water exchange will provide a solid scientific foundation for addressing fisheries management and ecosystem needs related to long term oceanic and climatic variability.

The Prince William Sound Science Center (PWSSC) provides the expertise and personnel to support the long-term mooring program collecting currents with Acoustic Doppler Current Profilers, conductivity (salinity) and temperature data at various sites in PWS. PWSSC is leading the effort for the field experiment in support of the model validation that will include surface ARGOS drifters.

Website: http://pwssc.org/

 

 

Satellite Products and Services Division
Direct Services Branch
Phone: 301-817-4543
Take Our Survey
Mailing Address:
NSOF (E/SPO53)
1315 East-West Hwy
Silver Spring, MD 20910-3282     USA