An Interference Avoidance Waveform for the UHF Downlink on the New NOAA GOES-R Satellite

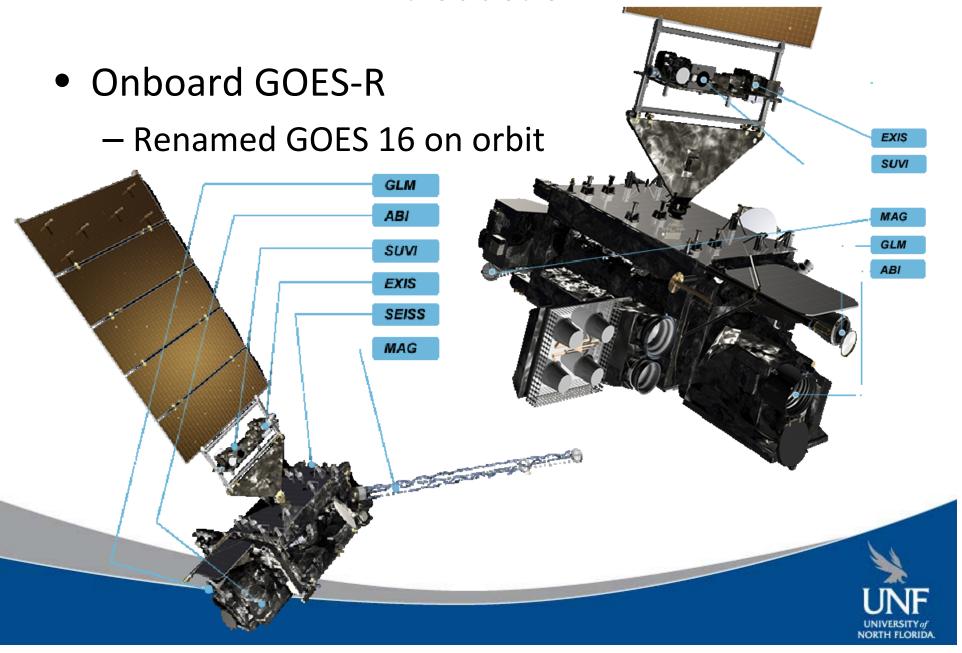
Brian Kopp
Department of Electrical Engineering
University of North Florida
Jacksonville, FL 32224
Email: brian.kopp@unf.edu

Duane Preble and Brett Betsill
NOAA Contractor: Microcom Design, Inc.
Hunt Valley, MD 21030
Email: {dpreble or bbetsill}
@microcomdesign.com

IEEE SoutheastCon, March 31-April 1, 2017 Charlotte, North Carolina

Presentation Outline

- Introduction
- Interference Profile
- NOAA Waveform Requirements
- Interference Avoidance Waveform
- Simulation Results
- Project Status


• November 19, 2016

- GOES-R Launch
- ULA ATLAS V vehicle

GOES-16 Ground Segment

NSOF Suitland MD, and WCDA Wallops Island, V

- NOAA Data Collection System
 - Established 1974, on all GOES satellites
 - One-way transmission of environmental data
 - FDMA/TDMA with GPS timing reference
 - 300 or 1200 bps data using 8-PSK, rate 2/3 TCM, with scrambling and interleaving (150/600 coded sps)
 - 10 second time slots for self-timed messages
 - 500 reply channels at 401-402 MHz, 750Hz apart
 - GOES East monitors odd channels
 - GOES West monitors even channels

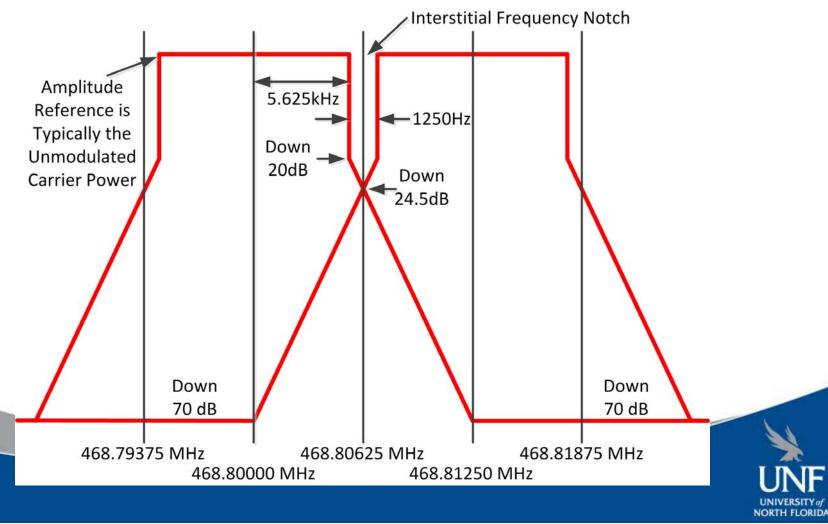

NOAA Data Collection System

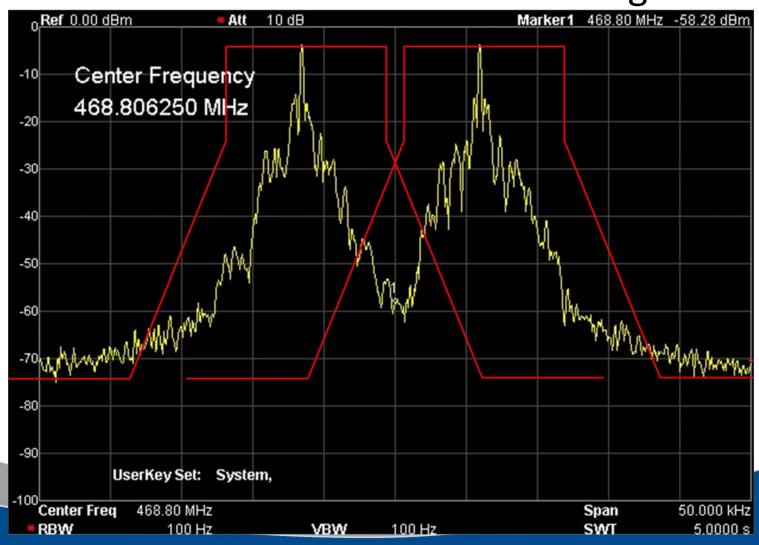
~25000 deployed Data Collection Platforms (DCPs)
 in western hemisphere

Europe, India, China and Japan operate similar

systems

Bridge mountedDCP in Florida




- Two-way comms with DCPs is now possible
- GOES 16 has a new S-Band/UHF transponder to send commands to DCPs
- Assigned frequency is 468.8MHz +/- 50kHz
- NOAA use is "secondary" to commercial LMR radio systems on the same frequency
- Same frequency range is used by LMR mobile and portable subscriber units that typically transmit up to 50 Watts (for mobile units)
- The GOES 16 UHF TX transmits ~100 Watts EIRP

- To the NOAA DCP command channel, the LMR signals are "interference"
- Two main types of LMR signals:
 - Analog NBFM in ~11kHz BW
 - Digital Mobile Radio (DMR) in 7.6kHz (4800 sps 4FSK with RRC pulse shaping)
- LMR channels at 468.8MHz are for industrial and business use
- LMR systems are coordinated into channels that are 12.5 kHz apart

 LMR signals must conform to an emission mask (Emission mask D for 12.5kHz spacing)

Emission masks with 2 NBFM LMR signals

- In the 100 kHz centered at 468.8 MHz that NOAA will use, there are 9 LMR 12.5 kHz channels
- Using busy hour radio usage probabilities we can estimate how often the 100kHz will experience "interference" from LMR users
- Two sets of studies available for usage data
 - FCC circa 1980 national study
 - Illinois Institute of Technology 2008 Chicago study
- Rough average busy hour probability of 14%

 Probability of having an active LMR signal in the 100kHz at 468.8 MHz, during the busy hour

Number of Active Land Mobile Channels	Number of Licensed Channels in a Particular Location								
Citatilleis	9	8	7	6	5	4	3	2	1
At least 1	74.3	70.1	65.2	59.5	53.0	45.3	36.4	26.0	14.0
At least 2	36.6	31.1	25.6	20.0	14.7	9.7	5.3	2.0	
At least 3	12.0	8.9	6.2	3.9	2.2	1.0	0.3		
At least 4	2.7	1.7	0.9	0.5	0.2	0.0			
At least 5	0.4	0.2	0.1	0.0	0.0				

- For a given location it is possible to determine how many LMR systems are licensed by searching the FCC license database
 - Urban locations have more licenses
 - Rural locations have fewer licenses
- In the US there are over 8000 licensed LMR systems on the 9 LMR channels centered at 468.8 MHz, representing roughly 400,000 subscriber units (w/ avg 50 units per system)

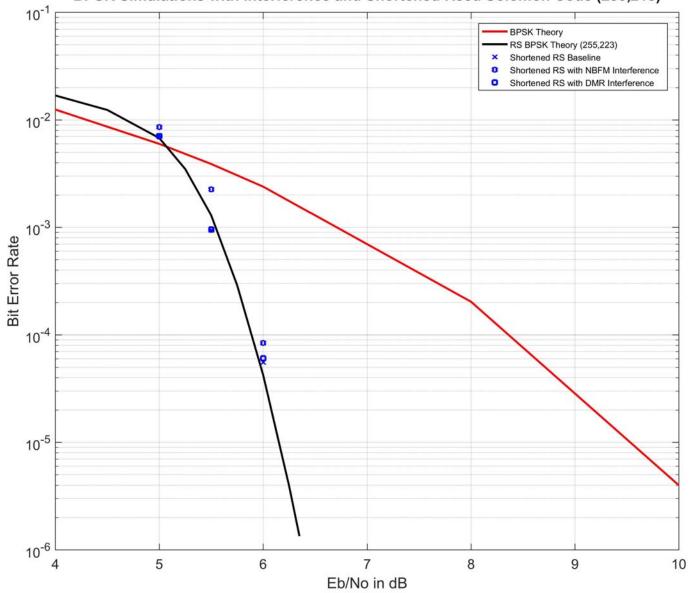
NOAA Waveform Requirements

- A DCP command waveform must meet certain requirements:
 - Power flux density at earth's surface (per NTIA)
 < -152dBW/m²/4kHz
 - Desired bit rate of 200-400 bps at 10⁻⁶ BER
 - Support for a 2 satellite constellation (GOES east and GOES west)
 - 100 kHz transponder BW
 - Transponder supports RRC with 1.0 roll-off factor

- Slow, Frequency-Hopped, Spread-Spectrum
- Exploit the ~40 dB interstitial notch between
 12.5kHz LMR channel assignments
- There are 8 notches in the 100kHz BW at 468.8MHz
- If no LMR signal is transmitting, the notch and surrounding spectrum are clear

- Use all 8 notches with a sequential hop pattern
- Keep command channels for GOES east and GOES west on different notches
- Initial test modulation is BPSK at 200 sps (move to QPSK after initial testing)
- Hop time is 0.1 second (chosen to match FCC rules regarding LMR FHSS requirements)
- 20 BPSK symbols per hop
- RRC with 1.0 roll-off factor
- Notch BW controlled by modulation, not hop speed

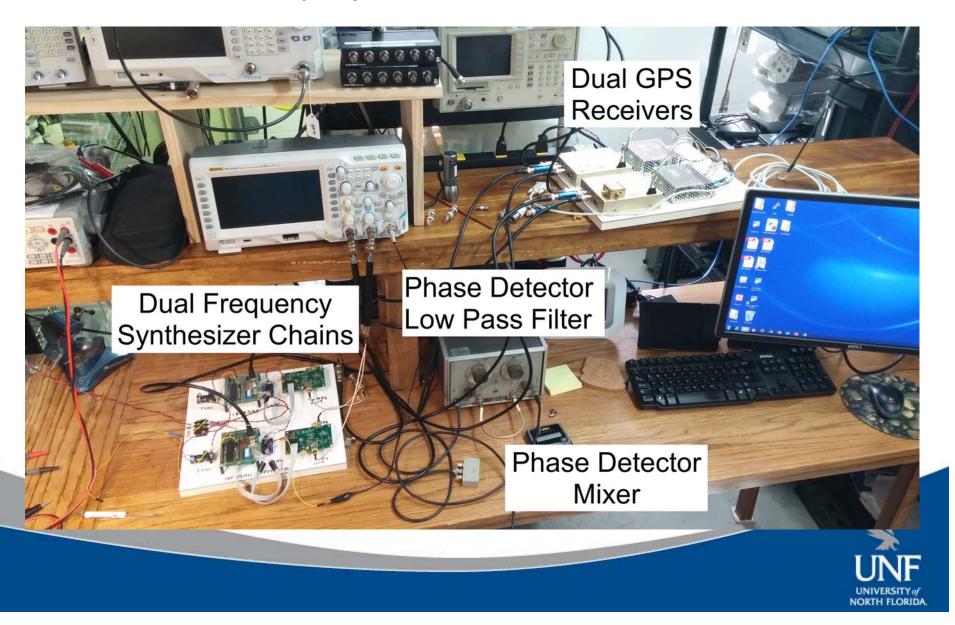
- Transmitter sync'ed to GPS
 - Data, hop pattern, and carrier frequency sync'ed
 - Includes offset adjustment for average propagation delay through GOES satellite
 - TX bits and hop patterns are sync'ed with clock
 - 200 bps, 10 hops/sec, 5 8-hop patterns/4sec
- DCP command receivers have GPS
 - Know their location and they know the time
 - Can correct for propagation delay
 - Know when hop starts within < 5% of symbol time


- DCP command receivers can be coherent
 - GPSDO for received carrier frequency accuracy
 - DDS Frequency synthesizers
 - 2-3 stage receiver w/ commercial IF (e.g. 455kHz)
 - Modified Costas carrier tracking loop maintains frequency lock through hop changes
 - Very small freq/phase step at hop boundary that is within loop BW, also no cycle slipping
 - Carrier tracking loop uses RRC filters with initial sample times from GPS soft lock. Enhanced with bit sync hard lock. Optional LP filters for searches

- Reed Solomon block code is included for potential burst errors when hopping next to an interference signal
- Standard (255,223) RS code shortened to (250,218) to permit GPS-based frame sync
 - 2000 coded bits per RS frame
- Assuming a coded symbol rate of 200 sps, RS frames are sent at 10 second intervals

Simulation Results

BPSK Simulations with Interference and Shortened Reed Solomon Code (250,218)


Project Status

- Development of test transmitter is complete
- Development of system monitoring receiver is underway
 - Coherent hop sync concept tested with parallel DDS platforms
 - Receiver is being developed using an ARM microcontroller (TI TM4C123G)

Project Status

Coherent hop sync test stand

