



# DCPR CDMA Overlay

**Application Development** 

April 14, 2005

# DCPR Feasibility Study

- Objective is to determine the possibility of operating DCPRS in a CDMA mode
- Without degrading current TDMA / FDMA operation. (with properly operating DCPRS)
- Limit Noise Floor Rise
- Perform tests using actual signals via GOES E or W
  - HDR/CDMA Transmitters
  - CDMA 511 Spread Receiver
- Recommend follow on project

- Spectral coverage in this case is by direct modulation.
- Modulation is 0-180 BPSK
- Modulation rate is the spreading ratio X
  the data rate
- The occupied spectra must be within the DCS pass band (401.7 to 402.1)

- Chip rate is data rate X the spreading
  - For example 150 sps X 2047 = 307050 chips per second
- Code length is not necessarily limited to the spread ratio. Usually related by an integer.
- Occupied bandwidth will depend on the data filtering. In the example if alpha of 0.3 is used the BW is 399KHz.

- The spreading ratio
  - Spreads the Transmitter power on the up link
  - Spreads the narrow band "jammers" on the receive processing
- Either the spreading ratio or relevant bandwidth issues may be used to compute the Transmitter spectral spread or receive "jammer" spread.

• Mutual Code Channel for Asynch Operation is  $(3N/(M-1))^A1/2$ 

- All Transmitters are received at equal power
- All Transmitters are operating independently

## DCPI CDMA Component

- Determine the feasibility of using CDMA
- Evaluate using link budgets, NTIA requirement, and as a secondary user subject to interference, AKA jammers.

# DCPR Designed Elements

- 511 Spread CDMA receiver / Correlator
- Combined CDMA / HDR Transmitter

Methods of analyses, tests, and integration

#### DCPR Tests

- Simulations (MatLab, Simulink, MathCad)
- Lab Tests with Test Gen and CDMA Transmitter
- Over air Tests at Wallops and with uCom DRGS

# DCPR Analyses

Literature (IEEE, Texts, Vendors)

Extensive Link Budget measured & theoretical

Over Air Test Results

Wallops DAMS-NT Data

Comparison of theoretical and actual test results

## DCPR Conclusions

- Three CDMA message noise sources
  - Thermal at 53 dBm /400 KHz equivalent
  - FT (FDMA TDMA) transmitters at 63 dBm equivalent
  - Mutual CDMA at -20 dB from a single CDMA Transmitter
- Practical CDMA system at 44 dBm EIRP, 2047 spread, with no FT noise cancellation, 10 channels CDMA and 40 simultaneous FT operation with growth to F/T additional channels.
- With F/T Noise Cancellation system may be 38-41 dBm EIRP and 25+ channels per satellite
- FT equivalent thermal noise floor is moved above from 53 dBm to 55, dBm. F/T Transmitter performance with EIRPs of >40 dBm are unaffected.

Additional F/T channels would also increase the Noise Floor

# DCPR Application Elements

- Practical CDMA Overlay design and implementation
- DAPS Compatible CDMA RX (2)
- Field Compatible DCPRX (30)
- Operational Management
- Draft DCPRS-CDMA Certification Standard

#### DCPR AP Tech Issues

- Real Time Correlator processing
- Code selection and analyses
- Real Time Post Correlator de-spreading and tracking
- Real Time Message processing
  - Initial Synchronization
  - Tracking
- DAMS-NT / DAPS Interface
- F/T "Jammer" preprocessing
  - Hardware / Software hooks
  - Analytical scheme

# CDMA DCPR Op Issues 1

- Basic System Definitions
  - Data Rate
  - Message Size
- DCPRS Objectives
- User / Site Assignments
  - Spread Code (aka CDMA Channel) ID
  - Transmitter interval and control

## CDMA OP Issues 2

- Comparison to RR channel
  - Does not require 3 Transmitters to assure message completion
  - Lower EIRP
- Comparison to ST Channel
  - Lower Date Rate
  - Lower EIRP by %
  - Currently the CDMA message would have higher bit efficiency. This may be improved.
  - Messages may be overlapped

# DCPR CDMA Monitoring

- CDMA Channel Use Monitoring
- SNR monitoring of the pilot (need some back ground data)
- Message data monitoring

## **USER CDMA OP Issues**

- Lower System cost
  - No need for GPS
  - Low Power, peak and average
  - Lower frequency control and phase stability specifications
- Easier to use
  - Fixed message formats
  - Limited operating regimens
  - Limited to short messages (<4 seconds)
- Higher message reliability
  - Simpler remote electronics
  - Lower Power
  - Less susceptibility to interference